

Google Colab e GitHub

Python: do Zero ao Júnior

Mirella Barros

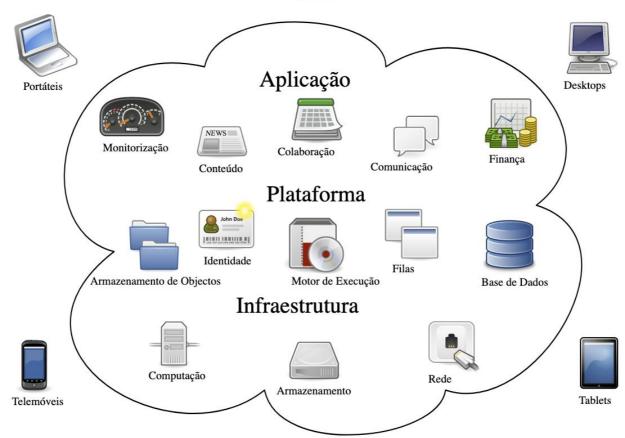
Conteúdo

- Visão Geral sobre Computação em Nuvem
- Google Colab (Google Colaboratory)
- Git e GitHub
- Exercícios

Introdução

- Como trabalhar com diferentes dispositivos e ao mesmo tempo manter o código sempre atualizado?
- Como trabalhar em equipe em um mesmo projeto sem que haja conflito entre versões de código?
- Como registrar o histórico de alterações de cada projeto?
- Como organizar um portfólio online com os projetos desenvolvidos?

Visão Geral sobre Computação em Nuvem



O que é computação em nuvem?

- A computação em nuvem, ou cloud computing, consiste em acessar aplicações ou arquivos por meio de páginas da internet ou programas específicos de conexão remota.
- Onde quer que você esteja, havendo uma conexão com a internet, será possível estabelecer acessos.

Computação em nuvem

Características da computação em nuvem

- Acesso remoto aos recursos de qualquer lugar com internet.
- Compartilhamento de arquivos entre usuários na internet, possibilitando manter atualizações em tempo real.
- Os usuários podem acessar serviços de tecnologia, como armazenamento, capacidade computacional e bancos de dados, conforme a necessidade.
- O provedor de nuvem geralmente lida com a manutenção e atualização da infraestrutura.

Exemplos de serviços em nuvem

Google colab

Google Colaboratory)

Colab é um serviço Jupyter Notebook hospedado que não requer configuração para uso e fornece acesso gratuito a recursos de computação, incluindo GPUs e TPUs. Colab é especialmente adequado para aprendizado de máquina, ciência de dados e educação.

- Execução em Nuvem: O Colab roda em servidores do Google, o que significa que não é necessário configurar um ambiente local;
- Bibliotecas Pré-instaladas: O ambiente já vem com diversas bibliotecas comuns instaladas, como NumPy, Pandas, Matplotlib, além de bibliotecas especializadas para visualização de dados e aprendizado de máquina;
- Integração com Google Drive: integração direta com o Google Drive, permitindo que os usuários salvem e compartilhem seus notebooks.

- Colaboração em Tempo Real: permite que vários usuários editem e comentem no mesmo notebook simultaneamente;
- Execução de Células de Código: os notebooks são organizados em células, que podem conter tanto código Python quanto texto em Markdown.
- Versão Gratuita Disponível: A versão gratuita permite avançar no aprendizado de Python e resolver muitos problemas, apesar de algumas limitações presentes nesse plano.

Abra o navegador web e acesse o endereço abaixo: colab.google

Exercício: Calcular a Média

Escreva um programa que calcule a média aritmética simples de 2 notas para 3 alunos. O código deve conter uma função para realizar o cálculo da média, e exibir o resultado de cada aluno na tela. O programa deve ser executado uma única vez e as notas devem ser solicitadas ao usuário para cada aluno separadamente.

Exercício: Calcular a Média

Escreva um programa que calcule a média aritmética simples de 2 notas para 3 alunos. O código deve conter uma função para realizar o cálculo da média, e exibir o resultado de cada aluno na tela. O programa deve ser executado uma única vez e as notas devem ser solicitadas ao usuário para cada aluno separadamente.

```
Aluno 1
Informe a primeira nota: 8
Informe a segunda nota: 9.5
A média do aluno 1 é 8.75
Aluno 2
Informe a primeira nota: 7.5
Informe a segunda nota: 6
A média do aluno 2 é 6.75
Aluno 3
Informe a primeira nota: 5
Informe a segunda nota: 3
A média do aluno 3 é 4.0
```

Exemplo de resultado

Solução: Calcular a Média

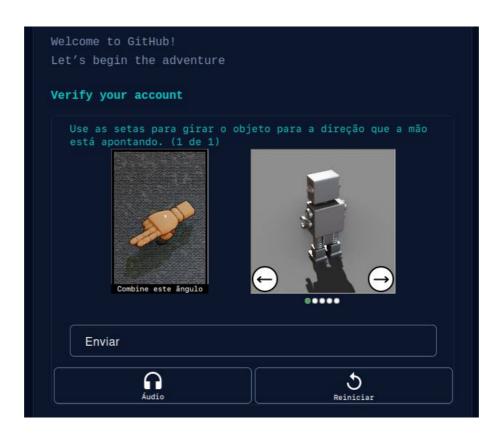
```
# Função que recebe dois números e retorna a média entre eles
    def calcula_media(a, b):
      return round((a + b) / 2)
[] # Laço de repetição para receber 2 notas de 3 alunos
    for i in range(1,4):
      print("Aluno", i)
      nota1 = float(input("Informe a primeira nota: "))
      nota2 = float(input("Informe a segunda nota: "))
      media das notas = calcula media(nota1, nota2)
      print("A média do aluno {0} é {1}".format(i, media_das_notas))
```


Lançado em 2008, o GitHub é uma plataforma de hospedagem de código-fonte e arquivos com controle de versão usando o Git. Ele permite que programadores ou qualquer usuário cadastrado na plataforma contribuam em projetos privados e/ou Open Source de qualquer lugar do mundo. Pertence atualmente à Microsoft.

Git != GitHub

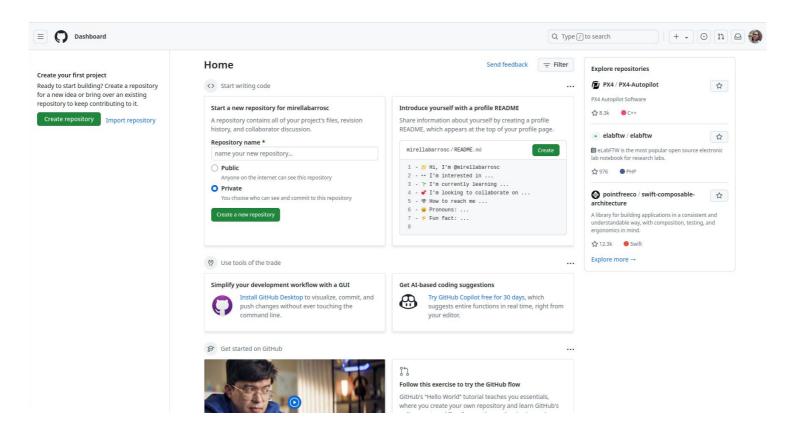
Abra o navegador web e acesse o endereço abaixo: github.com

Welcome to GitHub		
Let's begin the a		
Enter your email*		

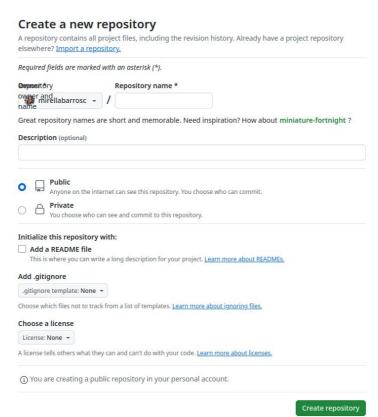


Welcome to GitHub! Let's begin the adventure	
Enter your email*	
Create a password*	
Enter a username*	
✓ mirellabarrosc	
Email preferences	
Receive occasional product updates and announcements.	Continue

You're almost done We sent a launch o						
→ Enter code*						
Didn't	get your emai	l? Resend the o	code or <u>update</u>	e your email a	ddress.	



Sign in to GitHub


Your account wa successfully. Plea continue	
Username or em	ail address
Password	Forgot password
	Sign in
	sign in

Criando um repositório no GitHub

Clonando o Repositório

- 1. Abrir o Visual Studio Code;
- 2. Clicar no ícone de versionamento de código;
- 3. Clicar no botão "Clonar Repositório" ("Clone Repository");
- 4. Permitir que o Visual Studio Code acesse a conta no GitHub;
- 5. Retornar ao Visual Studio Code, selecionar o repositório e indicar a pasta local para onde repositório será baixado.

Identificando-se

Abra o terminal, digite o código abaixo e pressione ENTER: git config --global user.name "SEU NOME"

Em seguida, digite a linha abaixo e também pressione ENTER: git config --global user.email seuemail@aluno.ifsc.edu.br

Fluxo Resumido

Stage (git add): prepara as alterações que deseja confirmar;

Commit (git commit): grava essas alterações no repositório local;

Push (git push): envia os commits locais para o repositório remoto.

Exercício: Salário com Bônus

Faça um programa que leia o nome de um vendedor, o seu salário fixo e o total de vendas efetuadas por ele no mês (em dinheiro). Sabendo que este vendedor ganha 15% de comissão sobre suas vendas efetuadas, informar o valor da comissão e o total a receber no final do mês, com duas casas decimais. É obrigatório utilizar função.

Exercício: Salário com Bônus

Nome do vendedor	Salário fixo	Total de vendas	Pagamento esperado
João	500.00	1230.30	684.54
Carolina	700.00	0.00	700.00
Maria	1700.00	1230.50	1884.58

Entre com o nome do vendedor: João

Informe o salário: 500

Informe o valor em vendas: 1230.30

João obteve R\$ 184.54 de comissão e vai receber R\$ 684.54

Solução: Salário com Bônus

```
# Função recebe o salário fixo e o valor em vendas
# Retorna o valor da comissão e o pagamento total
def calcula_pagamento(salario, vendas):
  comissao = vendas * 0.15
  pagamento = salario + comissao
  return comissao, pagamento
# Obtém o nome do vendedor, salário fixo e o valor em vendas
nome = input("Entre com o nome do vendedor: ")
salario = float(input("Informe o salário: "))
vendas = float(input("Informe o valor em vendas: "))
# Chama a função calcula pagamento para obter o valor da comissão e o pagamento total
comissao, pagamento = calcula pagamento(salario, vendas)
# Escreve o resultado na tela
print("{0} obteve R$ {1:.2f} de comissao e vai receber R$ {2:.2f}".format(nome, comissao, pagamento))
```


Até a próxima aula!